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1. Introduction

Weak scale supersymmetry is an attractive scenario for physics at the TeV scale. The

minimal supersymmetric standard model (MSSM) with R-parity stabilizes the Higgs mass

against radiative corrections, predicts weakly interacting dark matter, and satisfies con-

straints from precision electroweak measurements which rule out many other extensions

of the standard model. With the additional assumptions of dynamical supersymmetry

breaking in a hidden sector and flavor universal mediation of this breaking, the model

also explains the enormous hierarchy between the electroweak scale and the Planck scale

by dimensional transmutation while accommodating the constraints from flavor changing

neutral currents (FCNCs).

But an especially compelling feature of the MSSM is its correct prediction of the weak

mixing angle from gauge coupling unification [1 – 3]. This prediction supports the notion

of a “desert” between the weak scale and the unification scale at MGUT ∼ 2 × 1016 GeV,

and raises the hope that TeV scale measurements may allow indirect access to high scale

physics through extrapolation with the renormalization group.

Can we reliably predict other TeV scale observables from high scale models? Or, work-

ing from the bottom up, can we probe high scale physics through TeV scale measurements?

Previous work has indicated that superpartner masses may be just such observables [4 –

13].1 These investigations imply that superpartner masses depend on the means by which

SUSY breaking is communicated to the visible world, but not on the details of the hidden

sector itself. If correct, this would suggest that models with simple messenger physics are

1See [14] for a study of whether superpartner mass relations can be tested with sufficient precision at

colliders.
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highly predictive. For this reason substantial effort has gone into refining [15, 16] and even

automating [17 – 20] the renormalization group evolution of superpartner masses.

In this paper we demonstrate that this conventional wisdom may be wrong. While

MSSM evolution of gaugino masses is reliable, we find that the renormalization group

evolution of MSSM scalar masses may depend strongly on the unknown dynamics in the

hidden sector. The essential point is simple. Even though the visible and hidden sectors are

only coupled through higher dimensional operators, and therefore renormalizable couplings

in the two sectors run independently, the higher dimensional operators themselves are

renormalized by both sectors. Furthermore, the renormalization of these operators does

not factor into a visible and a hidden contribution, as would näıvely seem to be the case,

because of an additive contribution to scalar masses from couplings of MSSM gauginos to

the hidden sector. Therefore hidden sector interactions must be taken into account when

computing the renormalization of MSSM scalar masses. This may introduce dependence on

new (and unknown) parameters in predictions for scalar masses. In some cases these effects

are small, while in others they can even dominate over the usual one-loop MSSM running.

In all cases, this dependence can be summarized in terms of a few new parameters, and

model-independent predictions remain.

Before demonstrating this result in a simple toy model we summarize the main con-

sequences of hidden sector contributions to visible sector running. For simplicity we focus

on the renormalization of first and second generation scalar masses in this paper wherein

the MSSM Yukawa couplings can be neglected.

We begin by considering grand unified models (and high-scale messenger sectors)

wherein the operators responsible for scalar masses have unified coefficients at MGUT.

Ignoring hidden sector interactions, MSSM renormalization would then give simple mass

relations at the TeV scale which follow from unification at the GUT scale. We find that

hidden sector renormalization can greatly modify these relations. However, one linear com-

bination of scalar masses runs independently of hidden sector effects at one loop order in

visible (MSSM) couplings and to all orders in hidden sector couplings. This allows us to

predict

m2

eQ
− 2m2

eU
+ m2

eD
− m2

eL
+ m2

eE
= 0 (1.1)

at the TeV scale. This result holds for any unified theory in which no hypercharge D-term

is generated at the GUT scale.

Hidden sector running can also be important in models of gauge mediation [21 – 30].

Again, if the hidden sector couplings are strong, scalar mass predictions may be significantly

modified. Nonetheless, working at one loop order in MSSM couplings and to all orders in

the hidden sector, there are two linear combinations of first generation scalar masses for

which hidden sector effects drop out. In addition to (1.1) we predict

3(m2

eD
− m2

eU
) + m2

eE
= 0 (1.2)

at the TeV scale, in models of gauge mediation.

Hidden sector models in which strong coupling persists over a large range of scales

often have large hidden sector anomalous dimensions [31 – 34]. The running from the
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hidden sector may then drive scalar masses to values which are hierarchically different

from gaugino masses at a scale somewhere between the GUT and TeV scales. In the

case where these anomalous dimensions cause scalar masses to become very small at the

intermediate scale, they are subsequently regenerated through gaugino masses at energies

below the intermediate scale. The superpartner spectrum that results in this case is that

of gaugino mediation [35 – 37].

In the case where scalar masses are driven hierarchically larger than gaugino masses

the model fails to stabilize the electroweak scale and requires fine-tuning. Therefore this

running places new constraints on hidden sector dynamics. Theories which predict very

heavy scalars [38, 39] may nevertheless be interesting in the context of anthropics and the

landscape.

There are also hidden sector models with only very weak interactions. In such models

the effects discussed in this paper may be negligible. Examples include the Polonyi model,

and supergravity models in which supersymmetry is broken only by moduli with couplings

suppressed by MPl.

The renormalization effects we are describing may be understood in a simple toy model.

Consider a hidden sector with a single chiral superfield X with superpotential interaction2

Wh =
λ

3!
X3 . (1.3)

We couple X to a single generation of MSSM matter fields Φi = [Q,U,D,L,E]i and SU(3)×

SU(2)×U(1) gauge fields Wn with the usual non-renormalizable interactions produced at

the messenger scale M :

∫
d4θ ki

X†X

M2
Φ†

iΦi +

∫
d2θ w

X

M
WnWn (1.4)

For definiteness, we consider a grand unified model with a messenger scale M at or above

the GUT scale. Unification then predicts that the complex coefficient w at the messenger

scale is independent of the standard model gauge group. A non-renormalization theorem

for w, which holds in holomorphic renormalization schemes,3 implies that w remains in-

dependent of gauge group at all scales. Assuming that the hidden sector field acquires

a supersymmetry breaking F -component 〈X〉|F = F at the intermediate scale Mint, the

gaugino masses are given by the universal factor wF/M times gauge couplings squared.

In the following we will not distinguish the X-mass scale from the scale at which

supersymmetry breaks, Mint ∼ 1011 GeV. This assumption, easily relaxed, introduces no

essential changes in our analysis while substantially easing the notation.

The renormalization of the coefficients ki which determine the soft masses of the visible

sector scalars φi is more interesting. At one loop, the ki are renormalized by visible sector

2This example is too simple to spontaneously break supersymmetry. We use it only to demonstrate

the origin of renormalization effects from the hidden sector. A similar analysis applies in complete

O’Raifeartaigh models.
3Throughout this paper we adopt a holomorphic scheme for all hidden sector fields as well as the MSSM

gauge fields Wn. However we use canonically normalized MSSM matter and Higgs fields to more easily

identify scalar masses.
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Figure 1: Renormalization of the operators responsible for scalar masses.

gauge interactions and the hidden sector Yukawa coupling λ (see figure 1), and satisfy the

renormalization group equations

d

dt
ki =

2λ∗λ

16π2
ki −

1

16π2

∑

n

8Cn
2(Ri) g6

n w∗w

≡ γki −
1

16π2

∑

n

8Cn
2(Ri) g6

nG .

(1.5)

Here t = ln(µ/M), λ is the (running) Yukawa coupling of the hidden sector, and Cn
2(Ri)

are group theory coefficients for the matter fields in representation Ri of the n-th MSSM

gauge group. The standard model gauge couplings gn run according to the usual MSSM

RGEs. This differential equation is readily solved:

ki(t) = exp

(
−

∫
0

t

dt′ γ(t′)

)
ki(0) +

1

16π2

∑

n

8Cn
2(Ri)

∫
0

t

ds g6
n(s) exp

(
−

∫ s

t

dt′ γ(t′)

)
G .

(1.6)

Note that with our definitions we are interested in t < 0, the region below the messenger

scale. The exponential factor in the first term effectively rescales all scalar masses by a

common factor; this can be absorbed into the messenger scale boundary value for coef-

ficients of the operators responsible for the scalar masses, ki(0). Since only a common

factor is involved, this rescaling preserves any relationships that might be present at the

high scale. For example, in the case of unified boundary conditions, as would arise in

SO(10), this rescaling preserves such unified boundary conditions. The second term, an

additive contribution which exists even without hidden sector renormalization, splits the

scalar masses. If the anomalous dimension γ vanishes, the second term involves only stan-

dard model gauge couplings and the parameter w that determines the gaugino masses. In

this case the TeV-scale scalar mass differences are related to the gaugino masses. However,

when the coupling λ is non-negligible, the second term depends on hidden sector physics,

and spoils predictions that follow from these relations.

Note also that the hidden sector contributions to the second term cannot be absorbed

into a change of unified boundary conditions at the GUT scale. The example plotted in

figure 2, where we have chosen a very large (positive) value for the hidden sector anomalous

dimension γ, provides a good illustration. In this case, the hidden sector renormalization
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mD
2m~
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Figure 2: Renormalization of D̃ and L̃ scalar masses squared. The solid curves show the renor-

malization including hidden sector effects. The dashed curves show these masses with the same

values at 1TeV run to higher scales without hidden sector effects. Note that ignoring hidden sector

effects in the running would not show unification at t = 0.

strongly suppresses all scalar masses at the intermediate scale. Clearly, this cannot result

from MSSM running with any unified boundary condition for the ki(0) at the GUT scale.

In general, the best we can do is parameterize the masses at the intermediate scale

tint = ln(Mint/M) in terms of four moments

N0 =
|F |2

M2
exp

(
−

∫
0

tint

dt′ γ(t′)

)
k(0) (1.7)

Nn =
|F |2

M2

1

16π2

∫
0

tint

ds exp

(
−

∫ s

tint

dt′ γ(t′)

)
g6
n(s)G n = 1, 2, 3 (1.8)

giving scalar masses

m2
i (tint) = ki(tint)

|F |2

M2
= N0 +

3∑

n=1

8Cn
2(Ri) Nn . (1.9)

We have assumed a unified boundary condition at the messenger scale, ki(0) = k(0). At

one loop the MSSM RGE coefficients 8 Cn
2(Ri) are

SU(3) SU(2) U(1)

Q 32/3 6 2/15

U 32/3 0 32/15

D 32/3 0 8/15

L 0 6 6/5

E 0 0 24/5

(1.10)
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To obtain predictions for the physical scalar masses at 1 TeV, we should further evolve

these intermediate scale masses using the MSSM RGEs. At one-loop this evolution has the

same form as (1.5) (without the hidden sector effects) and may therefore be absorbed into

the moments Nn. Inclusion of higher order MSSM running would require evolving these

intermediate scale values down to the TeV scale using the higher-loop MSSM RGEs.

It is easy to check that the combination of masses in (1.1) vanishes if the hypercharge

D-term vanishes at the GUT scale, as is required by the non-Abelian gauge invariance of the

GUT group containing hypercharge. If we were to allow a non-vanishing hypercharge D-

term, as may be the case in GUT models with unified gauge groups of higher rank [40 – 42],

then the prediction (1.1) would be lost.

How significant are the contributions from the hidden sector running? For strongly

coupled theories modifications of N0 may be of order one or larger, whereas for weakly

coupled theories they are suppressed by a loop factor times a log compared to the tree

level value. However, contributions to N0 can be absorbed into the unknown UV boundary

condition ki(0), and are therefore of less interest. 4

Note that even though the Nn are formally suppressed by a loop factor relative to N0,

their contributions to scalar masses in the MSSM are numerically of similar size and split the

scalar masses significantly. Unlike contributions to N0, hidden sector modifications of the

Nn cannot in general be absorbed into UV boundary conditions without destroying relations

imposed by the high scale physics. For hidden sectors which become strongly coupled at

the intermediate scale, as might be expected in dynamical supersymmetry breaking models,

the effects on the Nn are O(1). Hidden sectors which remain strongly coupled for a range

of scales can have even larger effects. But even weakly coupled hidden sectors may have

noticeable impact. For example, if the hidden sector couplings are as weak as the MSSM

couplings, then the leading non-universal contributions to scalar masses are of order NMSSM
n

times a (hidden sector) loop factor with a logarithmic enhancement from the running; this

is larger by a logarithm relative to the usual two-loop MSSM contributions.

Measuring the second generation scalar masses is unlikely to give us independent in-

formation on high scale physics. This is because limits on flavor changing neutral currents

already require the first and second generation scalars to be nearly degenerate. This de-

generacy, once imposed at the high scale, is preserved by hidden sector renormalization,

and therefore the second generation scalar masses are expected (by flavor universality) to

be the same as first generation masses. The third generation is more interesting and is

discussed in section 3.

2. General hidden sectors

The above argument is straightforward to generalize to hidden sectors with multiple chiral

and vector superfields and more complex interactions. We continue to work to one-loop

4In the context of the MSUGRA model the hidden sector renormalization of N0 is equivalent to a

rescaling of m0 relative to m1/2 and A-terms at the GUT scale. Wave function renormalization of hidden

sector fields yields a similar universal rescaling of all MSSM soft masses relative to the gravitino mass. This

point has been emphasized in [32].
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order in visible sector couplings but incorporate hidden sector couplings to all orders in

perturbation theory. To begin, let us introduce an efficient notation for hidden sector

operators. We label all gauge invariant real superfield operators by Vv and all chiral

operators by Xx. In principle v and x enumerate a very large number of operators but in

practice only a few of them have small enough dimension to be relevant. For convenience

we will assume that the Xx are normalized (with powers of the messenger scale) to have

engineering dimension one, while the Vv have engineering dimension two. In the example of

the previous section we have X1 = X and V1 = X†X. Clearly, there is an arbitrariness in

the choice of basis for these operators, and Vv for different v may mix under renormalization.

Renormalization due to hidden sector interactions needs to be taken into account from the

messenger scale down to an intermediate scale tint at which the hidden sector dynamically

breaks SUSY.5 At tint we replace the auxiliary components of the hidden sector operators

Vv and Xx by their expectation values

〈Vv〉|D = Dv 〈Xx〉|F = Fx . (2.1)

General hidden-visible couplings (relaxing the assumption of unified gaugino mass

boundary conditions) take the form

∫
d4θ kvi

Vv

M2
Φ†

iΦi +

∫
d2θ wxn

Xx

M
WnWn (2.2)

where we have suppressed all indices labeling MSSM generations. In general, the scalar

mass operators may be different for the three generations, in which case the coefficients

k carry additional flavor indices. Continuing to suppress such indices, the superpartner

masses at the intermediate scale are given by

gaugino: Mn =

(
∑

x

wxn

Fx

M

)
g2
n(tint) (2.3)

scalar: m2
i =

∑

v

Dv

M2
kvi(tint) . (2.4)

The couplings wxn are not renormalized in perturbation theory. The kvi are renormalized

by the diagrams in figure 3, where arbitrary hidden sector renormalizations are included

through the blobs:

d

dt
kvi = γvv′ kv′i −

1

16π2

∑

n

8Cn
2(Ri) g6

n w∗
xnJvxx′ wx′n

≡ γvv′ kv′i −
1

16π2

∑

n

8Cn
2(Ri) g6

n Gvn .

(2.5)

Repeated indices v′, x, x′ are summed over, γvv′(t) is the anomalous dimension matrix of the

operators Vv in the absence of visible sector interactions and Gvn(t) ≡ w∗
xnJvxx′(t)wx′n are

5We have again ignored any difference between the scale at which SUSY breaks and the masses of the

hidden sector fields. Relaxing this assumption is straightforward.
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v′

v

x′x′

v

xx

Figure 3: Renormalization of the operators responsible for scalar masses, including arbitrary

hidden sector effects. Single solid lines represent the MSSM fields Q, double wavy lines represent

the vector operators V , and double straight lines represent the chiral fields X .

three vectors of real functions (one vector for each standard model gauge group) determined

by hidden sector interactions. Note that the blob connecting vector operators V with chiral

operators X,X†, represented by the Js, may include disconnected components as well as

connected ones. In the absence of hidden sector interactions the anomalous dimension

matrix vanishes, and J simply relates the basis of free chiral fields to the vector fields

X†X formed as products of these chiral fields. For example the toy model of the previous

section, with only one chiral field X and only one vector field X†X, has a single blob, and

J = 1, G1n = w∗w at one-loop.

In the following, we will use a matrix notation for the indices v, v′ labeling the vector

operators. Then the RGEs become identical in form to the RGE of our simple toy model

d

dt
ki = γ ki −

1

16π2

∑

n

8 Cn
2(Ri) g6

n Gn (2.6)

and it is straightforward to generalize the solution. The only new feature is the appearance

of path ordered exponentials to account for any non-commutativity of the matrices γ(t) at

different t

ki(t) = P exp

(
−

∫
0

t

dt′ γ(t′)

)
ki(0)

+
1

16π2

∑

n

8Cn
2(Ri)

∫
0

t

ds g6
n(s)P exp

(
−

∫ s

t

dt′ γ(t′)

)
Gn(s) (2.7)

Multiplying by the (vector of) expectation values D and assuming unified boundary con-

ditions for the ki(0) = k we obtain the scalar masses at the intermediate scale

m2
i (tint) = N0 +

3∑

n=1

8 Cn
2(Ri)Nn (2.8)

in terms of the moments

N0 =
D

M2
Pexp

(
−

∫
0

tint

dt′ γ(t′)

)
k (2.9)

Nn =
1

16π2

D

M2

∫
0

tint

ds g6
n(s)P exp

(
−

∫ s

tint

dt′ γ(t′)

)
Gn(s), n = 1, 2, 3 (2.10)
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3. The third generation

The analysis of the third generation scalar masses is similar, although complicated by the

presence of a large top Yukawa coupling and possibly other interactions. The presence of

this coupling necessarily connects the renormalization group flow of the top and bottom

quarks with that of the Higgs scalars, and we therefore treat the two Higgs doublets along

with the five matter fields of the third generation. This gives seven scalar masses in total.

The complete analysis, while straightforward, is messy, and we postpone the details

for a subsequent publication [43]. However the results are easily summarized. The most

predictive case applies to theories with a single, universal soft mass for all matter and Higgs

scalars, all Yukawa couplings small except for the top Yukawa, and A-terms proportional

to Yukawas (this is the case for minimal supergravity). The common soft mass may be

eliminated from predictions by subtracting masses from the first generation. The presence

of the large top Yukawa, which introduces a new moment when hidden sector renormaliza-

tion is incorporated, requires forming linear combinations that run independently of this

coupling. This leads to six predictions:

2m2

eQ3

−m2

eU3

−m2

eD3

−2m2

eQ1

+m2

eU1

+m2

eD1

= 0 (3.1)

2m2

eL3

−m2

eE3

−2m2

eL1

+m2

eE1

= 0 (3.2)

2m2

eQ3

−m2

eU3

−2m2

eQ1

+m2

eU1

= 0 (3.3)

m2

eE3

−m2

eE1

= 0 (3.4)

3m2

eU3

−3m2

eD3

+2m2

eL3

−2m2

eE3

−2m2
H +2m2

H̄
−3m2

eU1

+3m2

eD1

−2m2

eL1

+2m2

eE1

= 0 (3.5)

−3m2

eD3

−m2

eE3

+2m2

H̄
+3m2

eD1

−2m2

eL1

+m2

eE1

= 0 (3.6)

Relaxing the condition of universal soft masses, or incorporating large couplings leads to

more parameters and hence fewer predictions. For example if the Higgs soft masses differ

from those of the matter fields (but are the same for H and H̄) then the prediction (3.6)

is lost. If the soft masses for H and H̄ differ, then (3.5) is also lost. Independently, if

the µ term arises from the Giudice-Masiero [44] mechanism (µHH̄|F ⊂ X†HH̄|D) then

both (3.5) and (3.6) are lost. The inclusion of singlet neutrino fields with a large Yukawa

coupling would eliminate prediction (3.2). Finally if tan β is large then the predictions (3.3)

and (3.4) are no longer valid. Thus, (3.1) remains as the only robust prediction. The

others, (3.2)-(3.6) are still interesting as they function as indirect probes. For example,

finding a violation of (3.2) would be indirect evidence for the presence of a singlet neutrino

with a large Yukawa coupling.

4. Non-perturbative renormalization

Since we have already allowed for arbitrary functions γ and G, the renormalization

group equation for the scalars does include non-perturbative effects in the hidden sec-

tor. The gaugino mass operators Xx [
∑

n wxnWnWn] may receive non-perturbative renor-

– 9 –
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malizations from the hidden sector. Any new terms which may be generated from non-

perturbative hidden sector dynamics can only depend on the Wn in the combinations

[
∑

nwxnWnWn]. Furthermore, contributions which are relevant to gaugino masses must be

linear in [
∑

nwxnWnWn]. It follows that if gaugino masses were unified at some scale (i.e.

all wx independent of n), then the equality of ratios M1/g
2
1 = M2/g

2
2 = M3/g

2
3 holds at all

scales.

5. Gauge mediation

In models with gauge mediation supersymmetry breaking arises in the hidden sector and

is communicated to the visible sector via shared gauge interactions. Usually the existence

of messengers with standard model quantum numbers and supersymmetric masses M is

assumed. Integrating out these messengers generates the operators coupling hidden sector

fields to MSSM fields (2.2) with coefficients which are then calculable (for a given choice

of messengers). For our purposes we may be general and assume an arbitrary messenger

sector with MSSM fields coupling to the messengers only through their gauge interactions.

To leading (two-loop) order in the MSSM interactions, and with arbitrary messenger and

hidden sectors this gives (see for example [9])

ki(0) =
∑

n

8 Cn
2(Ri)Kn (5.1)

at the messenger scale M . Here we have suppressed indices v labeling the hidden sector

vector operators, and the functions Kn parameterize the details of the messenger and

hidden sectors. Running of the ki down to the intermediate scale Mint is governed by the

same renormalization group equations as before, (2.5). The solution is

m2
i (tint) =

D

M2
Pexp

(
−

∫
0

tint

dt′ γ(t′)

)
ki(0) +

3∑

n=1

8Cn
2(Ri)Nn (5.2)

The two terms may be combined: defining the new moments Ñn

Ñn =
D

M2
Pexp

(
−

∫
0

tint

dt′ γ(t′)

)
Kn + Nn (5.3)

we have

m2
i (tint) =

3∑

n=1

8 Cn
2(Ri) Ñn (5.4)

Thus the first generation scalar masses are given in terms of only three unknown moments,

leading to two predictions independent of the hidden sector

m2

eQ
− 2m2

eU
+ m2

eD
− m2

eL
+ m2

eE
= 0 (5.5)

3(m2

eD
− m2

eU
) + m2

eE
= 0 (5.6)

Since these combinations of masses are RG invariant at one-loop in MSSM couplings (and

to all orders in hidden sector interactions) these predictions hold for the masses at all scales.
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Inclusion of higher order MSSM running would require evolving these intermediate scale

values down to the TeV scale with the two-loop MSSM RGEs. This introduces a (weak)

dependence on the unknown scale Mint at the two-loop level.

6. Conclusions

We have demonstrated that interactions of the hidden sector introduce uncertainties into

the renormalization of MSSM scalar masses. These new effects cannot be incorporated by

simply rescaling the coefficients of scalar mass operators without modifying UV coupling

relations.

Our results make testing unification in the pattern of scalar masses at the TeV scale

significantly more challenging. Only when the hidden sector is weakly coupled can the

scalar masses be evolved to the high scale without knowledge of hidden sector interactions.

Without this knowledge, the mass relation (1.1) remains as the only model-independent

test of unification. In the case of gauge mediation there is one further prediction, (1.2).

In a forthcoming paper we will present a detailed analysis of third generation scalar

masses in the presence of interacting hidden sectors, and begin an exploration of specific

classes of hidden sectors which allow predictions in addition to (1.1).
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